首页 > 科技 > 正文

从普朗克黑体辐射开始,量子力学开始了飞速的发展
2020-03-26 17:55:28   来源:东方头条   

量子理论是科学史上能最精确地被实验检验的理论,是科学史上最成功的理论。所以它是确定的。量子物理实际上包含两个方面。一个是原子层次的物质理论——量子力学。正是由于它我们才能理解和操纵物质世界;另一个是量子场论,它在科学中起到一个完全不同的作用。

其实一开始普朗克对自己的理论并没有信心。即普朗克假定振动电子辐射的光的能量是量子化的,从而得到一个表达式,与实验符合得相当完美。他认为理论本身是很荒唐的,就像他后来所说的那样:“量子化只不过是一个走投无路的做法”。

普朗克将他的量子假设应用到辐射体表面振子的能量上,如果没有阿尔伯特·爱因斯坦,量子物理恐怕要晚一些建立。爱因斯坦毫不犹豫的断定:如果振子的能量是量子化的,那么产生光的电磁场的能量也应该是量子化的。尽管麦克斯韦理论以及一个多世纪的权威性实验都表明光具有波动性,爱因斯坦的理论还是蕴含了光的粒子性行为。

随后十多年的光电效应实验显示仅当光的能量到达一些离散的量值时才能被吸收,这些能量就像是被一个个粒子携带着一样。光的波粒二象性取决于你观察问题的着眼点,这是始终贯穿于量子物理且令人头痛的实例之一,它成为接下来20年中理论上的难题。

辐射难题促成了通往量子理论的第一步,物质悖论则促成了第二步。众所周知,原子包含正负两种电荷的粒子,异号电荷相互吸引。根据电磁理论,正负电荷彼此将螺旋式的靠近,辐射出光谱范围宽广的光,直到原子坍塌为止。

接着,又是一个新秀尼尔斯·玻尔迈出了决定性的一步。1913年,玻尔提出了一个激进的假设:原子中的电子只能处于包含基态在内的定态上,电子在两个定态之间跃迁而改变它的能量,同时辐射出一定波长的光,光的波长取决于定态之间的能量差。结合已知的定律和这一离奇的假设,玻尔扫清了原子稳定性的问题。玻尔的理论充满了矛盾,但是为氢原子光谱提供了定量的描述。他认识到他的模型的成功之处和缺陷。凭借惊人的预见力,他聚集了一批物理学家创立了新的物理学。一代年轻的物理学家花了12年时间终于实现了他的梦想。

开始时,发展玻尔量子论(习惯上称为旧量子论)的尝试遭受了一次又一次的失败。接着一系列的进展完全改变了思想的进程。

1923年路易·德布罗意在他的博士论文中提出光的粒子行为与粒子的波动行为应该是对应存在的。他将粒子的波长和动量联系起来:动量越大,波长越短。这是一个引人入胜的想法,但没有人知道粒子的波动性意味着什么,也不知道它与原子结构有何联系。然而德布罗意的假设是一个重要的前奏,很多事情就要发生了。

1924年夏天,出现了又一个前奏。萨特延德拉·纳特·玻色,这是一个印度科学家。提出了一种全新的方法来解释普朗克辐射定律。他把光看作一种无(静)质量的粒子(现称为光子)组成的气体,这种气体不遵循经典的玻耳兹曼统计规律,而遵循一种建立在粒子不可区分的性质(即全同性)上的一种新的统计理论。爱因斯坦立即将玻色的推理应用于实际的有质量的气体从而得到一种描述气体中粒子数关于能量的分布规律,即著名的玻色-爱因斯坦分布。这个我在前面章节中详细讲到过,大家可以返回去看看。

然而,在通常情况下新老理论将预测到原子气体相同的行为。爱因斯坦在这方面再无兴趣,因此这些结果也被搁置了10多年。然而,它的关键思想——粒子的全同性,是极其重要的。

突然,一系列事件纷至沓来,最后导致一场科学革命。从1925年元月到1928年元月:沃尔夫刚·泡利(Wolfgang Pauli)提出了不相容原理,为周期表奠定了理论基础。韦纳·海森堡(Werner Heisenberg)、马克斯·玻恩(Max Born)和帕斯库尔·约当(Pascual Jordan)提出了量子力学的第一个版本,矩阵力学。人们终于放弃了通过系统的方法整理可观察的光谱线来理解原子中电子的运动这一历史目标。

接着埃尔温·薛定谔(Erwin Schrodinger)提出了量子力学的第二种形式,波动力学。在波动力学中,体系的状态用薛定谔方程的解——波函数来描述。矩阵力学和波动力学貌似矛盾,实质上是等价的。

电子被证明遵循一种新的统计规律,费米-狄拉克统计。人们进一步认识到所有的粒子要么遵循费米-狄拉克统计,要么遵循玻色-爱因斯坦统计,这两类粒子的基本属性很不相同。

后来保罗·A·M·狄拉克(Paul A. M. Dirac)提出了相对论性的波动方程用来描述电子,解释了电子的自旋并且预测了反物质。狄拉克提出电磁场的量子描述,建立了量子场论的基础。玻尔提出互补原理(一个哲学原理),试图解释量子理论中一些明显的矛盾,特别是波粒二象性。

量子理论的主要创立者都是年轻人。1925年,泡利25岁,海森堡和恩里克·费米(Enrico Fermi)24岁,狄拉克和约当23岁。薛定谔是一个大器晚成者,36岁。玻恩和玻尔年龄稍大一些,值得一提的是他们的贡献大多是阐释性的。

创立量子力学需要新一代物理学家并不令人惊讶,开尔文爵士在祝贺玻尔1913年关于氢原子的论文的一封书信中表述了其中的原因。他说,玻尔的论文中有很多真理是他所不能理解的。开尔文认为基本的新物理学必将出自无拘无束的头脑。

1928年量子力学的基础已经建立好了。后来,亚伯拉罕帕斯以轶事的方式记录了这场以狂热的节奏发生的革命。其中有一段是这样的:1925年,塞缪尔·古德米斯特和乔治乌伦贝克提出了电子自旋的概念,玻尔对此深表怀疑。10月玻尔乘火车前往荷兰的莱顿参加亨德里克·A·洛伦兹(Hendrik A. Lorentz)的50岁生日庆典,泡利在德国的汉堡碰到玻尔并探询玻尔对电子自旋可能性的看法;玻尔用他那著名的低调评价的语言回答说,自旋这一提议是“非常,非常有趣的”。

后来,爱因斯坦和保罗·埃伦费斯特在莱顿碰到了玻尔并讨论了自旋。玻尔说明了自己的反对意见,但是爱因斯坦展示了自旋的一种方式并使玻尔成为自旋的支持者。在玻尔的返程中,遇到了更多的讨论者。当火车经过德国的哥挺根时,海森堡和约当接站并询问他的意见,泡利也特意从汉堡格赶到柏林接站。玻尔告诉他们自旋的发现是一重大进步。

伴随着这些进展,围绕量子力学的阐释和正确性发生了许多争论。玻尔和海森堡是倡导者的重要成员,他们信奉新理论,爱因斯坦和薛定谔则对新理论不满意。

基本描述:波函数。系统的行为用薛定谔方程描述,方程的解称为波函数。系统的完整信息用它的波函数表述,通过波函数可以计算任意可观察量的可能值。在空间给定体积内找到一个电子的概率正比于波函数幅值的平方,因此,粒子的位置分布在波函数所在的体积内。粒子的动量依赖于波函数的斜率,波函数越陡,动量越大。斜率是变化的,因此动量也是分布的。这样,有必要放弃位移和速度能确定到任意精度的经典图像,而采纳一种模糊的概率图像,这也是量子力学的核心。

对于同样一些系统进行同样精心的测量不一定产生同一结果,相反,结果分散在波函数描述的范围内,因此,电子特定的位置和动量似乎没有意义。这可由测不准原理表述如下:要使粒子位置测得精确,波函数必须是尖峰型的,然而,尖峰必有很陡的斜率,因此动量就分布在很大的范围内;相反,若动量有很小的分布,波函数的斜率必很小,因而波函数分布于大范围内,这样粒子的位置就更加不确定了。

波的干涉。波相加还是相减取决于它们的相位,振幅同相时相加,反相时相减。当波沿着几条路径从波源到达接收器,比如光的双缝干涉,一般会产生干涉图样。粒子遵循波动方程,必有类似的行为,如电子衍射。至此,类推似乎是合理的,除非要考察波的本性。波通常认为是媒质中的一种扰动,然而量子力学中没有媒质,从某中意义上说根本就没有波,波函数本质上只是我们对系统信息的一种陈述。

对称性和全同性。氦原子由两个电子围绕一个核运动而构成。氦原子的波函数描述了每一个电子的位置,然而没有办法区分哪个电子究竟是哪个电子,因此,电子交换后看不出体系有何变化,也就是说在给定位置找到电子的概率不变。由于概率依赖于波函数的幅值的平方,因而粒子交换后体系的波函数与原始波函数的关系只可能是下面的一种:要么与原波函数相同,要么改变符号,即乘以-1。到底取谁呢?

量子力学令人惊诧的一个发现是电子的波函数对于电子交换变号。其结果是戏剧性的,两个电子处于相同的量子态,其波函数相反,因此总波函数为零,也就是说两个电子处于同一状态的概率为0,此即泡利不相容原理。所有半整数自旋的粒子(包括电子)都遵循这一原理,并称为费米子。自旋为整数的粒子(包括光子)的波函数对于交换不变号,称为玻色子。电子是费米子,因而在原子中分层排列;光由玻色子组成,所以激光光线呈现超强度的光束(本质上是一个量子态)。最近,气体原子被冷却到量子状态而形成玻色-爱因斯坦凝聚,这时体系可发射超强物质束,形成原子激光。

这一观念仅对全同粒子适用,因为不同粒子交换后波函数显然不同。因此仅当粒子体系是全同粒子时才显示出玻色子或费米子的行为。同样的粒子是绝对相同的,这是量子力学最神秘的侧面之一,量子场论的成就将对此作出解释。

所以量子力学意味着什么?波函数到底是什么?测量是什么意思?这些问题在早期都激烈争论过,我也在前面的文章中思考过。直到1930年,玻尔和他的同事或多或少地提出了量子力学的标准阐释,即哥本哈根阐释;其关键要点是通过玻尔的互补原理对物质和事件进行概率描述,调和物质波粒二象性的矛盾。但爱因斯坦不接受这个解释理论,他一直就量子力学的基本原理同玻尔争论,直至1955年去世。

关于量子力学争论的焦点是:究竟是波函数包含了体系的所有信息,还是有隐含的因素(隐变量)决定了特定测量的结果。大家可以具体看看本书开篇的头几篇文章,就是介绍隐变量理论的。60年代中期约翰·S·贝尔(John S. Bell)证明,如果存在隐变量,那么实验观察到的概率应该在一个特定的界限之下,此即贝尔不等式。多数小组的实验结果与贝尔不等式相悖,他们的数据断然否定了隐变量存在的可能性。这样,大多数科学家对量子力学的正确性不再怀疑了。但我说过,贝尔不等式并没有直接结果。即贝尔不等式的出现偏向了玻尔,而不是爱因斯坦。

在20年代中期创立量子力学的狂热年代里,也在进行着另一场革命,量子物理的另一个分支——量子场论的建立。不像量子力学的创立那样如暴风疾雨般一挥而就,量子场论的创立经历了一段曲折的历史,一直延续到今天。尽管量子场论是困难的,但它的预测精度是所有物理学科中最为精确的,同时,它也为一些重要的理论领域的探索提供了范例。

激发提出量子场论的问题是电子从激发态跃迁到基态时原子怎样辐射光。1916年,爱因斯坦研究了这一过程,并称其为自发辐射,但他无法计算自发辐射系数。解决这个问题需要发展电磁场(即光)的相对论量子理论。量子力学是解释物质的理论,而量子场论正如其名,是研究场的理论,不仅是电磁场,还有后来发现的其它场。

1925年,玻恩,海森堡和约当发表了光的量子场论的初步想法,但关键的一步是年轻且本不知名的物理学家狄拉克于1926年独自提出的场论。狄拉克的理论有很多缺陷:难以克服的计算复杂性,预测出无限大量,并且显然和对应原理矛盾。

40年代晚期,量子场论出现了新的进展,理查德·费曼,朱利安·施温格和朝永振一郎提出了量子电动力学(缩写为QED)。他们通过重整化的办法回避无穷大量,其本质是通过减掉一个无穷大量来得到有限的结果。由于方程复杂,无法找到精确解,所以通常用级数来得到近似解,不过级数项越来越难算。虽然级数项依次减小,但是总结果在某项后开始增大,以至于近似过程失败。尽管存在这一危险,QED仍被列入物理学史上最成功的理论之一,用它预测电子和磁场的作用强度与实验可靠值仅差2/1,000,000,000,000。

毕竟人类的出现时间很短,一个人的生命长度,对于宇宙而言,短的可怕。而宇宙在亿万年前的整体环境情况,我们知之甚少。所以一切就必须谨慎。在谨慎中大胆。

世界上唯一不变的,就是变化。我相信几乎所有人都认可这个观点。那么又什么理由去相信定值永远是定值呢?

由此可以清晰的想到,量子力学的波函数一定不能包含所以量子运动的信息,只是量子系统,量子运动的陈述语言。因为有变化的缘故,无法做到这一点。但一定要认识到,量子力学是可靠的。

量子力学现在所有的疑惑,和诡异,是对人类而言的。不是对量子力学本身而言的。以人类来衡量宇宙规律,还是以宇宙规律来观测宇宙规律,这个区别很重要。人自身的局限性不可克服这是客观的。

我们必然需要更多的机制,来衔接宏观世界。这一切在本质上有矛盾,但可以理解矛盾,就一定不可怕。所有粒子,所有物体都具有波动性,都有波长。粒子的结构和组合,使得这种波动,波长有了新的变化。

在最最微观的世界中,我们一定能看到一个激烈,有碰撞的,有涨落的画面。所有的场的机制,不是独立的。

从黑体辐射到现在,我们走过很多的岁月。但为什么我感觉我们好像才刚刚来过呢?

独立学者,科普作家,艺术家灵遁者量子力学书籍《见微知著》

相关热词搜索:普朗克 量子力学 黑体 飞速 辐射

上一篇:吉他原声音箱推荐 AER TE签名款Compact 60
下一篇:最后一页

济宁知名律师   电话:0531-80961678
手机:18053115917   微信:18053115917   QQ:709581498   邮箱:709581498@qq.com
网站地图 (XML地图 / 百度地图